Turbulence-immune computational ghost imaging based on a multi-scale generative adversarial network

نویسندگان

چکیده

There is a consensus that turbulence-free images cannot be obtained by conventional computational ghost imaging (CGI) because the CGI only classic simulation, which does not satisfy conditions of imaging. In this article, we first report turbulence-immune method based on multi-scale generative adversarial network (MsGAN). Here, framework changed, but coincidence measurement algorithm optimized an MsGAN. Thus, satisfactory image can reconstructed training network, and visual effect significantly improved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-scale Adaptive Computational Ghost Imaging

In some cases of imaging, wide spatial range and high spatial resolution are both required, which requests high performance of detection devices and huge resource consumption for data processing. We propose and demonstrate a multi-scale adaptive imaging method based on the idea of computational ghost imaging, which can obtain a rough outline of the whole scene with a wide range then accordingly...

متن کامل

Adversarial Examples Generation and Defense Based on Generative Adversarial Network

We propose a novel generative adversarial network to generate and defend adversarial examples for deep neural networks (DNN). The adversarial stability of a network D is improved by training alternatively with an additional network G. Our experiment is carried out on MNIST, and the adversarial examples are generated in an efficient way compared with wildly-used gradient based methods. After tra...

متن کامل

Energy-based Generative Adversarial Network

We introduce the “Energy-based Generative Adversarial Network” model (EBGAN) which views the discriminator as an energy function that associates low energies with the regions near the data manifold and higher energies with other regions. Similar to the probabilistic GANs, a generator is trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign hi...

متن کامل

Metric Learning-based Generative Adversarial Network

Generative Adversarial Networks (GANs), as a framework for estimating generative models via an adversarial process, have attracted huge attention and have proven to be powerful in a variety of tasks. However, training GANs is well known for being delicate and unstable, partially caused by its sigmoid cross entropy loss function for the discriminator. To overcome such a problem, many researchers...

متن کامل

Generative Multi-Adversarial Networks

Generative adversarial networks (GANs) are a framework for producing a generative model by way of a two-player minimax game. In this paper, we propose the Generative Multi-Adversarial Network (GMAN), a framework that extends GANs to multiple discriminators. In previous work, the successful training of GANs requires modifying the minimax objective to accelerate training early on. In contrast, GM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optics Express

سال: 2021

ISSN: ['1094-4087']

DOI: https://doi.org/10.1364/oe.447301